Breathing for stress, anxiety and panic.

Anxiety, panic and a racing mind are classed as psychological problems but there is a strong biochemical link. These feelings can be triggered by chemical changes, as well as cause chemical changes. Breathing is connected to our nervous system and we influence our biochemistry with how we breathe. So if we train the breath, we can start to intentionally influence our nervous system through beneficial biochemistry, created with good breathing practices.

Stress of all kinds causes tension in the body. When we are stressed the body responds by tensing up.  Tension on the outside means tension on the inside so everything contracts including muscles, tissues, blood vessels and our airways. This constriction impedes the way our body functions and over time this tension affects how we breathe on a day-to-day basis. This is because we build neural pathways for breathing so poor breathing can become the habitual default pattern.

We can train the breath to calm the mind and oxygenate the brain so that we can think clearly. When you bring your attention to your breath this helps to quiet the mind and reduce over thinking. This brings us into the present moment which is usually fine. Anxiety and over thinking is usually about the future (worry) or about the past, perhaps regret or depression over something that has happened.  When we quiet the mind we create space between our thoughts so we can question their validity and allow new ideas to surface.

We may not always be able to control sources of stress in our life. We can however work with our breath to interrupt our emotional and mental reaction to the stress.  These reactions will otherwise continue to stimulate our stress response and restrict how our body functions.

Remember there are many sources of stress but they all generate the same type of reaction in the body. It doesn’t matter if it’s from toxins, poor food quality, negative emotions and feelings or illness and injury. The body’s physiological response is the same regardless of the cause.

The human body has a great response mechanism called the fight or flight response. This serves us well for acute short bursts of stress.  You may have heard of the book ‘why zebra’s don’t get ulcers’. If they survive a predator attack they shiver and shake to process the stress and then return to their baseline parasympathetic state (rest and digest). Unfortunately the pace of modern life tends to generate chronic, low grade persistent stress on a daily basis.  Without any kind of stress management our baseline will often reset to a far higher baseline and a constant pervading sense of anxiety.  This means our reaction times get shorter and shorter and our fuse trips faster and more frequently. We weren’t built to withstand this continual, chronic stress but nature always has a solution.

The exercises I teach work on your daily functional breathing pattern.  I teach you to breathe lightly, slowly and deeply.  This increases your tolerance to the build up of carbon dioxide and nitric oxide.  These molecules cause your airways and blood vessels to relax and dilate and make the oxygen you breathe in, accessible to the body.  This means all of your automatic functions such as blood pressure, heart rate, respiratory rate and digestion can function better.

You can rewire your breath and the neural pathways for breathing to:

When you work with the breath to relax the body you stimulate your vagus nerve. This one nerve controls whether you are in fight or flight or rest and digest. Rest and digest is the parasympathetic nervous system which controls all those automatic functions of the body which keep you alive, the autonomic nervous system (ANS). When you rewire your breathing you can begin to work with your ANS rather than hampering it with poor breathing patterns. Enhance and stimulate your health, rather than inadvertently damaging it.

For more information please do drop me an email or give me a call. I offer private breath training but I also have a new course coming soon. Please get in touch as soon as possible if you are interested.

Ultra processed food trial – ‘The results are in’

The results are in. This (2019) study involved 20 adults following either an ultra-processed (UPF) or unprocessed diet for 2 weeks at the NIH Clinical Centre. This was followed immediately by 2 weeks of the alternate diet. The diets were matched for nutritional composition: calories; energy density; macronutrients; sugar; sodium and fibre and participants were free to eat as much as they liked.

Despite composition matching, subjects on the UPF diet consumed an average of 508 extra calories per day, comprising more carbohydrate and fat, but not protein. Participants gained more weight during the UPF diet, an average of 1kg, and lost weight during the unprocessed diet. This implies that there is something about the processing itself which causes a metabolic issue.

Other interesting points to note were:

During the UPF diet

• The eating rate was faster

• Sodium consumption increased

• To compensate for the lower fibre level and match fibre intake for both diets, beverages with dissolved fibre were given

• Body fat mass increased

During the un-processed food diet:

• Appetite suppressing hormone increased

• Hunger hormone decreased

• Total cholesterol decreased

• Inflammation markers decreased

• Fasting glucose and insulin levels decreased

One thing is clear. Whilst there is much conflict about which diet is the ‘best’ the whole world seems to agree that avoiding processed foods is a good thing.

Refs: Hall, K. D. (2019) Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomised controlled trial of ad libitum food intake. Cell Metabolism; 30(1) pp. 67-77. e3.

#nutrition #eastbournenutritionist #UPF #realfoodheals #weightlosshelp

Facts of rice

A lot of my clients rely on white rice or pasta for quick meals. I thought I would write this blog about the benefits of brown rice and how to prepare it. Hoping to convince you all that brown rice is the way forward.

Brown rice is a whole grain and a major source of complex carbohydrate, fibre, minerals and B vitamins. Once the husk is removed the rice is sold as whole or brown rice.  Otherwise it is milled and polished at least three more times to remove the bran and the germ from the endosperm, producing white rice. 

Grain anatomy to illustrate which parts of a grain of rice we eat

1. Slower energy release

White rice is quickly digested to sugar increasing the potential for blood sugar spikes which are associated with increased risk of type 2 diabetes and insulin resistance. The carbohydrate in brown rice is wrapped in fibre which our bodies can’t digest. This means brown rice is digested to sugar much more slowly with a much slower release of energy. 

2. Fitter and fuller with fibre

Whole grains and fibre keep us full for longer which can help with weight management and keep our gut bacteria happy.  This is turn supports our immune system, mental health and risk of multiple chronic diseases.

3. Good for the heart

The British Heart Foundation says: “Higher intakes of fibre are also associated with a lower risk of heart and circulatory disease, and some cancers.” Brown rice may therefore improve heart health due to its fibre content as well as another specific compound found in its outer layers.

4. Packed with nutrients

Most of the nutrients in a whole grain of rice can be found in its outer layers which are removed during the production of white rice. So brown rice is more nutritious being a better source of vitamins and minerals, including calcium, iron, phosphorous, magnesium, selenium, vitamin B1 (thiamine) and vitamin B6 (pyridoxine).  Brown rice has 10 times the amount of B1 compared to white rice unless it is fortified. Vitamin B1 deficiency (beriberi) has been known to affect populations with a heavy reliance on white rice. This affects the heart, nerves and the muscles.  

The protein content and the quality of whole grains is also much greater than that of refined grains.

5. Antioxidant supply

In January 2023, researchers identified the main antioxidant of brown rice as cycloartenyl ferulate (CAF). This not only protects cells it also boosts the production of antioxidants within other cells.

CAF is hybrid compound of two different types of antioxidant (polyphenols and phytosterols) which may help lower cholesterol levels, suppress inflammation and reduce chronic disease risk.

6. Soaking

This not only reduces cooking time but lowers the arsenic content which can be high in rice according to the FDA. The soaking also makes the nutrients in rice more absorbable because it helps to remove the phytic acid content. The latter can combine with minerals such as magnesium and zinc and block their absorption. Whole grains are effectively seeds so they contain enzyme inhibitors which are activated by water and warmth in preparation for growth.  Soaking in essence pre-digests the grain making it’s nutrients more readily available.

I personally soak brown rice overnight if possible with water and a dash of lemon juice or apple cider vinegar.  Even a few hours is helpful if I forget the night before. I am constantly surprised when discussing this with my older clients how many will tell me that their parents used to do this. We seem to lose many of our food traditions with the speed of modern life.

7. Leftovers

Cool quickly and store in fridge within an hour of cooking.  Eat within 24 hours or you can freeze it. Defrost it in the fridge and reheat thoroughly.

Refs:; Fallon, S. and Enig, M. G. (1999) Nourishing Traditions: the cookbook that challenges politically correct nutrition and the diet dictocrats. NewTrends Publishing Inc, Washington, DC.

Do you breathe correctly?

This blog explains how to identify if your breathing might be disordered and why you might consider doing breathwork to improve your health.

There are some very common signs and symptoms that your breathing could be improved which include:

  1. Cold hands and feet
  2. Stressed or tense during the day
  3. Yawning, sighing, and taking big breaths
  4. Mouth breathing especially at night
  5. A low BOLT score
  6. Fast breathing

If you notice any of these being relevant to you, it's best to get in touch with me, or your physio or health practitioner for assistance. I discuss each aspect below in more detail.

Cold hands and feet

This is usually attributed to poor circulation.  The organs of circulation are the heart and your blood vessels.  To allow more blood to circulate the blood vessels need to dilate.  CO2  in the smooth muscle cells lining the blood vessels acts as a vasodilator. When we increase our tolerance to the build-up of CO2  this enhances vascular function so how you breathe ultimately influences your body temperature.

Stressed or tense?

This can be triggered by all kinds of issues and seems to be the theme of modern life.  When we are stressed the body responds by tensing up.  Tension on the outside means tension on the inside so everything contracts including muscles, tissues, blood vessels and our airways. This constriction impedes the way our body functions and over time this tension affects how we breathe on a day-to-day basis. This is because we build neural pathways for breathing so poor breathing can become the default pattern.

We may not always be able to control sources of stress in our life. We can however work with our breath to interrupt our emotional and mental reaction to the stress.  These reactions will otherwise continue to stimulate our stress response and restrict how our body functions.

When you work with the breath to relax the body you stimulate your vagus nerve. This one nerve controls whether you are in fight or flight or rest and digest. When you are in fight or flight this is “emergency mode” and not a time for your autonomic nervous system (ANS)to stimulate growth and repair.    You don’t start long term building projects when your life is being threatened. By switching the body to rest and digest your automatic functions such as blood pressure, heart rate, respiratory rate and digestion can begin to function properly. When you work on your breath you rewire these neural pathways to something more optimal for the body.

Yawning, sighing, big breaths

These can all be signs that your body is trying to adjust its’ chemical balance.   Unfortunately they can become habits with associated neural pathways which can be difficult to break. Over time this can alter the gas exchange taking place and affect our breathing chemistry namely oxygen, nitric oxide and CO2.  This in turn changes your body’s pH balance, forcing the body to make adjustments to facilitate homeostasis.

Mouth breathing

This is detrimental for several reasons:

Low BOLT score

This is indicative of disordered breathing see here and here for how to take your BOLT score. A minimum of 25 is preferable.

Fast breathing

How fast we breathe affects how quickly we off load CO2.  We need to have some tolerance to CO2  build-up because oxygen is released from haemoglobin in the blood, in the presence of CO2. If you breathe too fast the oxygen often doesn’t reach the lower lungs where most of the alveoli are. This reduces the opportunity for oxygen to enter our blood stream and to reach our cells and tissues.

Health issues and poor breathing

The health issues associated with poor breathing are numerous and include the following: asthma; exercise performance; hormonal issues; covid; blood pressure; pain and fibromyalgia; diabetes; insomnia; snoring and sleep apnoea; anxiety and panic disorders.

Physiological benefits of Oxygen Advantage

It’s one technique with many powerful benefits:

Open airways  Increases vagal tone  
Opens blood vessels  Improves your ANS function  
Increases oxygen to tissues  Increases your heart rate variability  
Helps support blood pressure levelsExpands lung function

If you are worried about your breathing or just interested in finding out more you can take the breathing quiz on my website or simply give me a call on 07740 876233 or drop me an email to find out more.

What's in season?

Food in season

How to Optimise Your Vitamin D Level

There are two major forms of vitamin D from two different sources.

  1. Vitamin D3 (cholecalciferol) is our main source (80-90%) and it is produced in the skin following sunlight exposure but it is also found in foods of animal origin. Technically this makes vitamin D a pro hormone.
  2. Vitamin D2 (ergocalciferol) is found in foods of vegetable origin and supplements

In the UK our main dietary sources of vitamin D are food of animal origin, foods fortified with vitamin D and supplementation. Naturally rich food sources include egg yolk and oily fish such as salmon, mackerel, herring and sardines.


We probably absorb between 62 to 92% of our dietary vitamin D. It is fat soluble and absorbed in the small intestine from where it is transported via the lymph into the circulation. Vitamin D produced under the skin enters the fluid between our cells (extracellular) before defusing into the circulation and being transported to the liver.

Common food sources of vitamin D

Food sourcesInternational Units (IU)
Salmon 140g408
Sardines canned 140g184
Mackerel 140g476
Mushrooms 80g (enriched)128
1 egg64
Tuna 140g60
Beef mince 100g24
Lamb 90g20
Butter 10g4
Vitamin D content is taken from British Nutrition Foundation ‘Vital vitamin D’ resource sourced  from McCance and Widdowson's The Composition of Foods: Seventh Summary

Total vitamin D production depends on a combination of factors:

The body appears to store vitamin D in adipose tissue (fat cells) and possibly muscle tissue. Studies suggest that levels of vitamin D decline as our body mass index (BMI) increases, and increase as BMI decreases. However the ability of the body to access these stores is unclear and it may be sequestered rather than stored.

There are in fact, a whole lot of factors that affect how much vitamin D our bodies can make including:

Role in the body

The main role of vitamin D is to help regulate the absorption and metabolism of calcium and phosphorus from the gut. To a lesser extent it also regulates magnesium absorption.

Vitamin D is therefore vital for bone mineralisation, bone growth and bone health. Without it bones will be soft, malformed, and unable to repair themselves normally. This results in the disease called rickets in children and osteomalacia in adults. Vitamin D also plays an important role in musculoskeletal health and neuromuscular function because of its’ role in calcium homeostasis.

However evidence is emerging of other roles for vitamin D including:


Both vitamin D2 and vitamin D3 are converted by the liver to 25-hydroxyvitamin D written in shortform as 25(OH)D and then to the active hormone 1,25 dihydroxyvitamin D. Tests measure 25(OH)D to estimate the status of vitamin D in the body because it is the most useful indicator. It remains in the blood longer and is present at much higher concentrations than the active form.

Picture source

Vitamin D blood levels

The National Osteoporosis society (NOS) guidelines (UK, 2013) and the Institute of Medicine (US) classify vitamin D results as follows:

The Scientific Advisory Committee Report (SACN) report (2016) considers levels in the UK below 25 nmol/L to be inadequate with an increased risk of rickets and osteomalacia.

However the Endocrine Society Task Force concluded 50 nmol/L as the cut off for deficiency and recommended that concentration “should exceed 75 nmol/L” for maximum benefit on calcium, bone and muscle metabolism. Other researchers have proposed thresholds between 50-120 nmol/L to reduce the risk of adverse non-skeletal outcomes.

Dr Damien Downing, president of the British Society for Ecological Medicine and vitamin D expert, recommends a vitamin D blood level of at least 75 nmol/L for immune support and levels over 100 nmol/L to lower your risk of cancer and autoimmune disease.  Grassroots Health (vitamin D global expert Group) suggest anything below 100 nmol/L is inadequate and recommend optimum levels of 100-150 nmol/L.

Your magnesium and vitamin K2 intake can also influence your vitamin D absorption. Magnesium is required for the conversion of vitamin D into its active form. If your magnesium level is too low you may store vitamin D in its inactive form.

How to supplement if blood levels are low

Low blood levels of vitamin D may mean that you are not getting enough exposure to sunlight or enough dietary intake or that there is a problem with its absorption from the intestines.

In the UK most people should be able to obtain enough vitamin D from sunlight from the end of March to the end of September.

During autumn and winter as many of us don’t get enough sun exposure a supplement may be required.  The best way to determine your requirement is to measure your vitamin D ( level and then use the Grassroots vitamin D calculator to work out the correct dose.

Grassroots Health also suggest taking 600mg of magnesium and supplemental K2 of 90 mcg for women and 120 mcg for men daily. This helps to support bioavailability of your vitamin D as well as conversion to the active form.

Elderly people, those with darker skin tones, overweight or obese individuals or those exposed to limited sunlight have a much higher risk of becoming deficient. The Department of Health and Social Care recommends a daily supplement containing 10 micrograms (400IU) of vitamin D for higher risk groups like these.

You can also get some idea of where your level might be by using the D Minder Pro app from the App Store. This app is expertly designed to help you track and manage your vitamin D levels. It also provides other useful data related to your geographical location.

How much to supplement

Official recommendations on how much to supplement vary widely. In the UK it's 400 IU (international units) or 10mcg (micrograms). The EU and many countries go for 400-600 IU, the exception is Italy's 2000 IU (50 mcg), in the USA its1000 IU (25 mcg). Some vitamin D researchers and experienced clinicians, such as Professor Hollick, recommend 4000 to 5000 IU (125 mcg) for daily maintenance.  A general guideline for adults over the age of 18 is between 50-100 mcg (2000 – 4000IU) for the colder months. It is recommended to work with a healthcare practitioner before supplementing at these levels.

Which form of vitamin D to supplement

Clinicians usually recommend vitamin D3 for supplementation as D2 isn’t so effective at raising vitamin D levels in the blood.


Commercially vitamin D is synthesised by UVB irradiation of 7DHC (from sheep wool) and ergosterol (from fungi).  Prolonged sunlight doesn’t cause excess production but high dose supplementation can be toxic and can cause hypercalcaemia (soft tissue deposition of calcium). High levels will usually reflect supplement intake.

To evaluate how your sun exposure and/or supplement dose is working for you it’s a good idea to re measure your vitamin D level after three to six months.

N.B. 1 microgram of vitamin D is equal to 40 International Units (IU). So 10 micrograms of vitamin D is equal to 400 IU.


Alliance for Natural Health

Bikle, D.D. (2009) Vitamin D and immune function: understanding common pathways; Curr Osteoporos Rep; Jul; 7(2); pp.58-63. doi: 10.1007/s11914-009-0011-6.

Haddad, J.G. et. al (1993) Human plasma transport of vitamin D after its endogenous synthesis; Journal of Clinical Investigation; June; 91(6) pp.2552-5. doi: 10.1172/JCI116492.

Holick, M.F. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline; J Clin Endocrinol Metab; July; 96(7); pp.1911-30. doi: 10.1210/jc.2011-0385.

Ovesen, L. et. al (2003) Geographical differences in vitamin D status, with particular reference to European countries; Proceedings of the Nutrition Society; Symposium on optimal nutrition for osteoporosis prevention; 62 pp. 813-821.

SACN (2016) Vitamin D and Health; The Scientific Advisory Committee on nutrition; Available from (SACN)

Ten top tips (10TT) weight control trial

This BLOG looks at the outcomes of an interesting study on weight control.

GP’s are often the first port of call for weight control advice. However they aren’t in a position to provide specialised therapy in this area. The researchers identified that although healthy ‘habits’ are the aim of many weight loss programmes, very few draw on the theory of habit formation.  So they designed a simple effective intervention that could be delivered without specialist skills and based on the fundamentals of building habits.

The essential feature of the psychological theory of habit formation is that habits are stimulated by environmental contextual cues. The intervention took the form of a leaflet called ‘Ten Top Tips’ (10TT) and it incorporated this idea. It listed target behaviours with advice on repetition and context. It also recommended self-monitoring during the habit acquisition phase.

A pilot study was carried out and then a small scale randomised control trial (RCT) with a volunteer population.  Subsequently a larger RCT was carried out with 537 primary care patients.

Pilot RCT weight loss results at 8 weeks and 32 weeks

8 weeks 10TT 8 weeks
No action
32 weeks
10 TT
Weight loss-2.0 kg- 0.4kg-3.6 kg54% achieved the 5% weight loss associated with beneficial health effects

Larger RCT weight loss results 537 participants after 3 months

 10TT group‘Usual care’*Comments
Weight loss- 1.68 kg- 0.84 kg16% achieved a 5% weight loss compared to only 8% in the control group

* N.B. Usual care refers to the standard care provided by GP’s versus the 10TT leaflet.  In the pilot study the volunteer pilot RCT the control group didn’t receive any kind of care. The participants in the larger RCT were recruited from GP surgeries whereas the pilot study recruited volunteers.

The interesting thing to note is that in the pilot study weight loss continues after the intervention ended.  Maintenance of weight loss is often the biggest challenge for most people.

The 10 Top Tips (10TT)

I’ve reproduced the top 10 tips in full above as per the study.  My main comment is that I am not necessarily a fan of reduced fat products as they often use sugar or artificial flavourings to replace the fat content.  However monitoring your total fat intake is useful and especially any trans-fat intake as this will hamper weight loss efforts. I often refer clients to the BANT healthy plate  My other comment on the ‘top ten’ is re sugar free squashes.  These will often use sweeteners which are neuro toxic and confuse the body.  It’s best to wean yourself off these kind of drinks entirely.

  1. Keep to your meal routine by eating at roughly the same times each day whether this is two or five times a day.
  2. Go reduced fat (I advise caution here as often reduced fat items are full of sugar or flavourings)
  3. Walk off the weight – walk 10,000 steps which is equivalent to 60-90 minutes of moderate activity. Use a pedometer to count the steps.
  4. Pack a healthy snack – if you snack choose a healthy option such as fresh fruit or yogurts instead of chocolate or crips.
  5. Learn the labels – be careful about food claims (see point 2).  Check the fat and sugar content on food labels when shopping and preparing food.
  6. Caution with your portions – Don’t heap food on your place (except vegetables). Think twice before having second helpings.
  7. Up on your feet – break up your sitting time. Stand up for 10 minutes out of every hour.
  8. Think about your drinks – Choose water or sugar-free squashes.  Unsweetened fruit juice contains natural sugar so limit to one glass a day (200 ml/1/3rd pint). Alcohol is high in calories: limit to one unit a day for women and two for men.
  9. Focus on your food – Slow down.  Don’t eat on the go or while watching TV.  Eat at a table if possible.
  10. Don’t forget your 5 a day – Eat at least 5 portions of fruit and vegetables a day.

They calculated that these habits would generate a calorie deficit of between 800-900 calories daily.


Beeken, R.J. et al. (2012) Study protocol for the 10 Top Tips (10TT) Trial: Randomised controlled trial of habit-based advice for weight control in general practice; BMC Public Health; 12 pp. 667

Beeken, R. J. et al. (2017) A brief intervention for weight control based on
habit-formation theory delivered through primary care: results
from a randomised controlled trial; International Journal of Obesity 41 pp.246-254

Intermittent fasting and fasting for health

Intermittent fasting
Weight loss

Intermittent fasting is in the limelight at the moment but many traditions have been incorporating fasting for millennia.  Humans have historically fasted overnight, for religious reasons or during periods of food scarcity. Some monks have a precept called ‘no meals after noon’ and religions such as Taoism, Sikhism, Hinduism, Christianity, and Buddhism all fast.

Fasting principles

What we eat at mealtimes is our primary fuel source for 3-4 hours.  After 4-12 hours we utilise sugar (glycogen) stored in the liver, muscle and brain.  Somewhere between 10 or 12 hours we will start to burn fat out of the liver to produce glucose for energy (gluconeogenesis).  It takes 2-3 days for fat to become the predominant fuel source.

The body will often store toxins in fat cells waiting for an opportune moment to detoxify.  It’s a bit like us putting things in cupboards, pending a rainy weekend for a clear out. When we are constantly digesting this moment doesn’t materialise. The body never gets chance to undertake any longer term regeneration or deep cleaning projects and our cells and guts can become overwhelmed.

"fasting is the body's equivalent of spring cleaning your house or servicing your car"

The digestive system

The inside of our gastro intestinal (GI) tract is still considered external to the human body. The cells lining the GI tract act as the gatekeeper to our body’s internal environment. The lining is delicate about half the width of a human hair.  Nevertheless it underpins all of our health by protecting our immune system and blood stream from toxins and pathogens.  The lining is covered in a mucus layer which contains our gut flora (microbiome) and this forms a selective barrier between us and the outside world.

Host microbiome axis: Interaction between the GI tract, the mucus layer and our immune system

Source: Esser, D. et al. (2019) Functions of the microbiota for the physiology of animal metaorganisms; Journal of Innate Immunity; 11(5), pp. 393-404

The immune system

Just behind our gut lining sits our gut associated lymphoid tissue (GALT) which is host to the majority of our immune system. Most people eat at least 3 meals a day plus snacks. This means our immune system is on duty 14 hours a day assessing anything that filters through the gut lining for potential toxins and pathogenic material. 

With constant stimulation and no rest, our immune system can’t build up reserves of antioxidants or take care of any long-term building projects. It then risks developing faults or errors of judgment which scientists believe can make us susceptible to:

Types of fasting

There are a number of different types of fasting (see below)*.  There are also hybrid diets such as the fasting mimicking diet (FMD). This is low in calories and protein but high in fat and maintains micronutrient content. Time restricted feeding (TRF) when food is kept to an eating window of 12 hours (7am to 7pm) or 8 hours (8am to 6pm) will provide an overnight fast of 12 and 14 hours respectively. These variations may be more suitable for some people depending on their state of health and unique physiology.  

Longer fasts of up to 5 days can promote autophagy which is a process of programmed cell dissolution.  This takes place once all of our glycogen stores have been utilised c. 24-72 hours around the 4th or 5th day. With this process the body breaks down any damaged cells  such as mis-folded proteins, ameloid plaques, damaged DNA etc. It’s a process of self-eating where the body recycles damaged materials for alternative use. Shorter fasts such as Intermittent fasting help the body to train into longer fasting periods. Fasting shouldn’t be undertaken without due consideration of your current health status and reference to your health practitioner or GP.

“You get rid of the junk during starvation — and once you have food, you can rebuild… The damaged cells are replaced with new cells, working cells — and now the system starts working properly.”

Dr Valter Longo

What fasting does

Your autonomic nervous system (ANS) carries out all the functions which basically run your body on a day to day basis.  Fasting seems to press the reset button on your physiology and all the functions of your ANS including:

Gut / immune system reset - fasting appears to reset our metabolism and rejuvenate the immune system as it gets chance to rest and recover and restore our antioxidant reservoirs.

Gut hormone/stress reset – fasting resets our hormonal systems and avoids the constant adrenaline state to which so many of us have become accustomed.

Gut / brain reset – fasting can help to change our emotional relationship with food as we challenge the body to adapt to different levels of food supply.

Liver reset – fasting facilitates detoxification as we burn fat and sugar out of our liver compartments. 

How fasting improves health

Studies in humans and mice of different types of fasting demonstrate improvement in multiple health indicators such as:

My approach and cautions

I don’t introduce fasting until I believe the client is sufficiently healthy to follow the protocols safely.  My approach is personal to each client. Before starting to restrict food intake we work to ensure that they are well nourished from a micronutrient perspective, have a well functioning liver and detoxification pathways and are hormonally stable.  In addition they will preferably be trained in the breath-work I teach.  This helps clients to work with their autonomic nervous system to manage their stress levels and emotional state in general, but also around food.

We typically start with 2-3 days of intermittent fasting.  Usually it’s from the last evening meal at around 7 pm until about 1 pm or lunchtime the next day. This provides an 18 hour break for both the digestive and the immune systems.

Hydration is also important.  I have a specific hydration protocol for clients to follow when they are preparing for or undertaking a fast or intermittent fast. There are some contraindications to fasting so I always recommend working with a health practitioner.

What the research shows

Most of the research is currently in mice but it seems to demonstrate:

Get in touch on 07740 876233 for more information or if you would like or to discuss your health concerns and how I might be able to support you.

Please note: This article is intended for information purposes so readers can gain an understanding of the benefits of fasting for health.  I highly recommend working with a health practitioner if you plan to try this as there are many aspects to take into consideration.


Chaix, A. (2022) Time-restricted feeding and caloric restriction: two feeding regimens at the crossroad of metabolic and circadian regulation; Methods Molecular Biology; 2482 pp 329-340 DOI: 10.1007/978-1-0716-2249-0_22

Cheng, C-W. et. Al. (2014) Prolonged Fasting Reduces IGF-1/PKA topromote hematopoietic-stem-cell-based regeneration and reverse immunosuppression, Cell Stem Cell; 14(6) pp.810-823

Longo, V.D. and Panda, S. (2016) Fasting, circadian rhythms, and time restricted feeding in healthy lifespan; Cell Metabolism;14; 23(6); 1048-1059.

Mattson, M. P., Longo, V.D. and Harvie, M. (2018). Impact of intermittent fasting on health and disease processes. Ageing Research Reviews: 29 pp. 46-58.

Rangan, P. et. al. (2019) Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology; Cell Reports; 5;26 (10); pp. 2704-2710.e6. doi:10.10.16/j.celrep.2019.02.019

Sutton, E.F. (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure and oxidative stress even without weight loss in men with pre diabetes; Cell Metabolism; 5; 27(6); 1212-1221,e3.

Wei, M. et al. (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease; Science Translational Medicine; 15;9(377)

Vaughn, K.L and Mattison, J.A. (2018) Watch the clock not the scale; Cell Metabolism, 27 pp.1159-1160.


Zach Bush Biology Basecamp (2020)

Pending:- Intermittent fasting: personalization for better outcomes by Amanda Swaine, DipION, BANT, CNHC

* Fasting types:- intermittent fasting (60% energy restriction on two days or more), fasting mimicking diet, time restricted feeding (8 hour food window) and periodic fasting (5 day diet providing 750-1100 kcal).

Fed up with snoring?

Nighttime snoring can range from being a mild embarrassment and nuisance to a more serious chronic problem. It can sometimes be a potential indicator of more serious health issues such as obstructive sleep apnea (OSA). There are essentially two reasons snoring can happen, either breathing is too forceful or the upper airway is too narrow.

During sleep the tissues of the throat relax which can partially block the airway. This tissue vibrates as air flows past it and it is this vibration and turbulence in the airway which leads to snoring. The more this airway narrows the more forceful the airflow becomes increasing vibration and therefore the snoring volume. There are two types of snoring mouth snoring and nasal snoring.


Mouth snoring

If you wake with a dry mouth then you are probably mouth breathing during the night and this won’t refresh you properly. If you mouth breath during the day you will build neural pathways regarding this behaviour pattern which will continue during sleep. This can often be a habitual pattern rather than an anatomical requirement especially where children are concerned. To re-establish full-time nasal breathing Patrick McKeown founder of The Oxygen Advantage breathing programme and author of the book by the same name recommends using lip tape. You can use any tape suitable for skin contact such as Mircropore but if the idea of covering your mouth with tape is stressful you can use MYOTAPE. This tape uses elastic tension to bring the lips together without covering the lips completely. You can purchase this tape here It may seem rather alien but a new 2020 study revealed that even full-time mouth breathers could often lip-tape providing there wasn’t any nasal obstruction. They also concluded that in children full-time nasal breathing is critical for craniofacial and airway development.

Nasal snoring

If you are nasal breathing during sleep but still snoring then this can be due to a number of different reasons summarised below.

Conventional treatments such as nasal dilators are usually designed to increase space in the upper airway. What these don’t do is address any fast or hard breathing patterns which may also be contributing to the problem.   Imagine sucking air through a straw. If you do this slowly and gently the air will pass through but if you breathe in fast the sides of the straw will stick together cutting off the air supply. Depending on which factors are relevant the Oxygen Advantage Breathing © programme may be able to improve or help to alleviate symptoms.

The way we breathe during the day affects the way we breathe at night which affects how we sleep and whether or not we snore. The lower and upper airways are mechanically connected. Diaphragmatic breathing tones and opens the throat area minimising the risk of collapse to cause snoring. The exercises I teach look to reset the day to day breathing pattern. When we breathe light and well during the day we can also breathe light during the night.

The exercises

The breathing exercises correct dysfunctional breathing patterns and help to:


There is a lot of crossover between snoring and insomnia. Insomnia affects between 25 and 30% of the general population and for about 10% this is a chronic complaint requiring medical help. Insomnia is linked to many health complaints such as hyper arousal of the autonomic nervous system (ANS), stress, irritability, daytime fatigue, anxiety, emotional dysregulation, difficulty concentrating, depression and even high blood pressure.

Obstructive sleep apnea (OSA)

If OSA is present or if chronic snoring progresses to OSA this can lead to more serious health consequences. If you suspect OSA you should consult your GP who will probably recommend a sleep study to identify if OSA is present and if so which type.

For help with any of these issues or if you have any questions regarding the Oxygen Advantage breathing programme please get in touch today. I may be teaching or consulting but will return your call as soon as possible. I always do my best to fit clients in if they are ready to invest in their health.

For help with any of these issues or if you have any questions regarding the Oxygen Advantage breathing programme please get in touch today. I may be teaching or consulting but will return your call as soon as possible. I always do my best to fit clients in if they are ready to invest in their health.


McKeown, P. (2015) The Oxygen Advantage; Harper Collins, New York.

McKeown, P. (2021) The Breathing Cure; Amazon, GB.

Zaghi, et al. (2020) Assessment of nasal breathing using lip taping, a simple and effective screening tool; International Journal of Otorhinolaryngology; 6(1), 10.

All about the menopause

Bullet point summary

Peri menopause – the window of opportunity

Lots of women dread the menopause.  It’s often viewed as a process of ageing and associated with uncomfortable symptoms ranging from heavy periods to weight gain, anxiety and night sweats. Lara Biden, author of the ‘hormone repair manual’, reframes this as a “window of opportunity” to resolve issues which left unaddressed might become problematic later in life. 

This blog aims to explain what’s going on physiologically and why.  The key things to know are:

What is perimenopause?

Perimenopause begins 2-12 years before periods stop so the late 30’s to early 40’s.  Hormonally the picture resembles a second puberty as the transition is made to a high oestrogen/low progesterone scenario. The only difference is the decline and loss of progesterone whereas in puberty progesterone is gained. Finally oestrogen will return to childhood levels which is just right for this new phase of life.

Symptoms are largely caused by oestrogen as it fluctuates erratically before settling to a new but lower normal.  Progesterone also drops which means that the formally stable oestrogen to progesterone ratio is now much higher than in ovulatory years. . Eventually we lose almost all progesterone but we continue to make some oestrogen. This scenario of high but wildly fluctuating oestrogen and low or no progesterone can trigger or exacerbate a number of health symptoms.  It also places extra demands on important physiological systems such as our immune system and how we make energy and detoxify the body. During this transition period the body has to learn, or remember, a new way of operation.

Strong symptoms

Strong symptoms are usually due to a combination of genetics, general health status and the condition of your menstrual cycle prior to peri-menopause.  If you have a history of menstrual mood symptoms you may be hypersensitive to hormonal variation.

Opportunity for health

Even if you don’t experience symptoms it’s still a time to take extra care of your health as it’s a period of physiological flux.  The brain and the nervous system have to work differently.  They have to work without oestrogen and progesterone.  The brain recalibrates and the immune system remodels. This increases the risk for anxiety, depression and memory loss.  Together with sleep disturbance this can lead to chronic pain if no action is taken. All of this is associated with increased vulnerability to heart disease and insulin resistance. There is often a slight temporary cognitive decline and there is a slightly increased risk of mental health issues. 

Physiology of perimenopause

Once menopause occurs women have to revert to intracrinology having previously relied on ovarian oestrogen production. This is a process of localised oestrogen production which takes place in tissues such as the heart and brain.  This will produce oestrogen at about 10% of previous levels via the enzyme aromatase.  Aromatase converts androgen hormones to oestrogen. So oestrogen production continues via increasing androgen production for conversion to oestrogen and up regulating aromatase activity. Androgen hormones include androstenedione from the ovaries and DHEA from the adrenal glands. Hence healthy adrenal glands are essential for a healthy menopause and ovaries should be retained if possible.

Once menopause occurs women revert to a process of localised oestrogen production in tissues such as the heart and brain.  An enzyme called aromatase converts androgen hormones to produce about 10% of previous levels of oestrogen.  Androgen hormones are produced by the ovaries and from the adrenal glands. Hence healthy adrenal glands are essential for a smooth menopause transition and ovaries should be retained if possible.  This process of change may take from months to years hence the variation in symptom length.

Abdominal weight gain

This is a common complaint and has a number of contributing factors. Metabolism slows down without oestrogen and progesterone to stimulate it. Oestrogen helps the body to build muscle so lower levels are associated with less muscle mass and this also slows metabolism.

When oestrogen levels decline this can trigger insulin resistance.  This refers to chronically elevated levels of insulin in the blood.  Insulin is the hormone that causes cells to accept glucose. If glucose cannot get into cells it will be stored as fat. Insulin resistance is therefore a key factor in abdominal weight gain.

There is a natural shift to androgen excess during this period which perpetuates a cycle of insulin resistance and weight gain. There can be up to a 15% drop in metabolic rate from the combined effects of muscle loss, androgen excess and insulin resistance.

If insulin resistance is present or develops this can lead to over production of an oestrogen called oestrone.  This is a risk factor for cardiovascular disease, fibroids, pelvic pain, abnormal uterine bleeding and breast cancer. So eliminating insulin resistance is critical for a healthy menopause.

Neurological symptoms: anxiety, depression, memory loss, mood, insomnia and migraines

Your brain is the source of most menopause symptoms because it has to learn to work in a different way.  It's a neurological transition as well as a reproductive one. Following menopause there can be a drop in the brain’s activity and energy levels of up to 25%. Up to now the brain has utilised glucose as its primary source of energy and oestrogen has helped brain cells with this. Now the brain has to shift to using ketones so it utilises fat rather than glucose as its primary fuel source.

Progesterone and oestrogen both play numerous roles in brain function.

Little wonder then that the brain needs some time to adjust to its new status and that difficulties sometimes arise during this adjustment period.  The loss of progesterone can reduce the ability to cope with stress as well as increase the risk of anxiety, depression, memory loss, mood symptoms and sleep disturbance.

Metabolic flexibility is key to help with this adjustment. The body has the enzyme pathway to burn ketones but it’s often switched off from lack of use.  This stems from the provision of regular food (glucose) and frequent snacking. The cornerstones to reinstate this pathway are exercise, intermittent fasting, stable blood sugar and a healthy gut with a diverse microbiome.

During menopause the thermoregulatory mechanism in the brain narrows and there is far less tolerance to temperature changes. Researchers believe hot flashes are caused by the temperature sensor in the brain called the hypothalamus. Falling oestrogen levels and lower amounts of serotonin and adrenaline all affect the hypothalamus.  This means that in the task of managing menopause symptoms the importance of stress management cannot be overstated.

The final symptom the brain may trigger is migraines.  This is attributed to oestrogen fluctuations and the loss of progesterone’s calming influence.  Iron deficiency from heavy periods can also be a factor here.

The immune system

The immune system also has to recalibrate during perimenopause. Progesterone calms the immune system and during the reproductive years your body is used to regular doses of oestrogen and progesterone. Losing the anti-inflammatory properties of both hormones can cause problems with the immune system including chronic inflammation or triggering autoimmune issues such as autoimmune thyroid disease. Any inflammation has to be addressed as it will make menopause symptoms worse and increase insulin resistance.

It is also essential to sort out any issues with digestion and liver detoxification as both of these can contribute to sources of inflammation.  Most of your immune system is located around your gut and it constantly communicates with your gut bacteria.  If anything goes wrong this activates your immune system causing inflammation.  Your liver is responsible for deactivating oestrogen which is then removed from the body via the bowel.  If your gut bacteria aren’t healthy you can get something called ‘gut-liver-recirculation’ where oestrogen gets reactivated and reabsorbed in a more toxic form.

Autoimmune thyroid disease

The loss of progesterone can be a trigger for autoimmune thyroid problems as it reduces the availability of thyroid hormone.  There is a lot of overlap between symptoms of perimenopause and thyroid issues so this can easily be missed.  In addition both of these conditions overlap with symptoms of insulin resistance because of the interplay between the hormones involved. Thyroid disease is more common in women and increases over the age of 40 with a one in ten chance of incidence. This is a complicated area and practitioner help is recommended.

Heavy or painful periods and breast pain

During perimenopause oestrogen can spike up to three times its normal level and fluctuates erratically.  Oestrogen thickens the uterine lining and without progesterone to counteract this the menstrual flow can increase along with pain.  For both heavy periods and severe pain it is essential to see your doctor for an assessment. The most common cause is anovulatory cycles where oestrogen is made but not progesterone.  However there are other possibilities that need to be ruled out the main ones being  endometriosis; adenomyosis; fifibroids; anovulatory bleeds; thyroid disease; bleed disorders. Heavy periods can also result in iron deficiency which manifests in fatigue, breathlessness, hair loss and easy bruising.

Period pain such as cramping which is inconvenient but less severe is usually caused by prostaglandins. These hormone type compounds constrict blood vessels which contributes to period pain. They can be triggered by high levels of oestrogen as it fluctuates during perimenopause. The latter can stimulate high histamine and mast cell activation both of which can cause prostaglandin release. Before perimenopause this activity was often regulated by progesterone. It might be worth trying a dairy free diet as this may reduce prostaglandins, histamine levels and mast cell activation. Fortunately diet and lifestyle and key micronutrient supplementation can often resolve this.

Breast soreness or tenderness can be caused by high oestrogen levels but can also be a sign of iodine deficiency.  Addressing the core strategies already highlighted will generally resolve this.

How to navigate the menopause

I can help you


Briden, L. (2021) The hormone repair manual. Greenpeak Publishing

Dong, T. A. (2020) Intermittent Fasting: A heart healthy dietary pattern; The American Journal of Medicine:133(8):pp.901-907 DOI: 10.1016/j.amjmed.2020.03.030

Labrie, F. ( 2017) Science of intracrinology in postmenopausal women; Menopause: 24(6); pp.702-712; doi: 10.1097/GME.0000000000000808.

Mosconi, L. (2021) Menopause impacts human brain structure, connectivity, energy metabolism, and amyloid-beta deposition; Nature:11:10867;

Wilcox, G. (2005) Insulin and insulin resistance; The Clinical Biochemist reviews; 26(2):pp.19-39